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Abstract

J This paper considers the problem of determining the mean and distri-

bution of the length of a minimal spanning tree (MST) on an undi-

rected graph whose arc lengths are independently distributed random

variables. We obtain bounds and approximations for the MST length

and show that our upper bound is much tighter than the naYve bound

obtained by computing the MST length of the deterministic graph with

the respective means as arc lengths. We analyze the asymptotic prop-

erties of our approximations and establish conditions under which our

bounds are asymptotically optimal. We apply these results to a network

provisioning problem and show that the relative error induced by using

our approximations tends to zero as the graph grows large. < ) 6--



A spanning tree is a connected, acyclic subgraph that spans (i.e., includes) all

the nodes of a given graph (see Harary [1969]; Lawler [1976] for definitions and

properties). A minimal (maximal) spanning tree is a spanning tree that has the

minimum (maximum) total edge weight, the minimum (maximum) being taken over

the set of all spanning trees of the given graph.

We consider the problem of determining the probability distribution function

(DF) and expected value of the length of a minimal spanning tree (MST) for an

undirected graph with random arc lengths. An obvious approximation to the ex-

pected length of a MST in random graphs is obtained by replacing the arc-length

random variables by their respective expectations and computing the MST length

for the resulting deterministic graph. This approximation is an upper bound for the

true expected length of MST. Our approximation provides a tighter bound. Our

approach also enables us to approximate the DF of the MST length, and we prove

that our approximation is asymptotically precise with probability one.

A classical application for the minimal spanning tree is the design of communi-

cation networks. As an application of our results we consider a probabilistic version

of the network design problem. An order is to be placed for material to construct

a communication network (a minimal spanning tree). At the time that the order

is placed, the arc lengths are not known with certainty. Over- or under-supply of

material results in increased costs. We seek an order level which minimizes the

expected total cost. Our approach will provide asymptotically optimal solutions to

this problem.

The organization of this paper is as follows. Section 1 introduces the stochastic

spanning tree problem and our approach to its approximation. In section 2 we

present some Monte Carlo results as well as an analytical characterization of the

accuracy of our approximation. Section 3 proceeds to establish some asymptotic

properties of our bounds, and section 4 presents an application of these bounds

to the network provisioning problem and results pertaining to their asymptotic

optimality. Finally, section 5 concludes the paper with some remarks on open

questions.



1 The Stochastic Spanning Tree Problem

The stochastic MST problem can be formulated in several ways. Gilbert [1965]

considered the problem of constructing minimal spanning trees to connect n points

placed at random in the unit circle IIPII < 1 according to a Poisson process, where

]J " ]1 represents the "distance" of a point from the origin. Gilbert considered three

different norms (Euclidean, Manhattan, and maximum) on Cartesian surfaces and

obtained asymptotic bounds on the expected length of the MST. For all choices of

the norm, he estimated this length to be asymptotic to c(irn)4 and showed that

the constant c is less than 2- . Steele [1981] considered growth rates of MST's on

n points distributed in a Euclidean space, and Lueker [1981] obtained asymptotic

results on expected lengths of maximum spanning trees when arc lengths drawn

independently from the unit normal distribution. In a remarkable paper, Frieze

[1985] recently established that when arc lengths on a complete graph are non-

negative i.i.d random variables having a common DF F, which is differentiable at

zero with F'(O) = D > 0, and has finite mean and variance, then the length of

the MST tends to C(3)/D in expectation as well as in probability, where C(3) =
z -= 1.202....

The stochastic framework we posit for our problem is close in spirit to the clas-

sical MST problem in the deterministic case: the graph structure, i.e. the configu-

ration of the nodes and arcs, is considered given; only the arc-lengths are random

variables, each with its own probability distribution.

Let G = (N, A) denote a graph with N being the set of nodes, and A C N x N

being the set of undirected pairs of nodes called arcs. We shall always label the

nodes of G from 1 through n, where n = INI.

Let Xj denote the random variable representing the length of the arc between

node i and node j (since the arcs are undirected, we make no distinction between

Xj and Xjj), and let F . denote the distribution function of X,,. The X,,'s are

assumed independent.

Let T denote the class of all spanning trees of G. By Cayley's formula (see

Riordan [1978]), if G is complete (i.e. if all links are permitted), then

ITI =n
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In general, let 1I M < nn-2 . Then, t = {T}ff where each T in A is a spanning

tree of G. We shall assume that G is connected.

Let

= min{Y}, (1)

where

Y= Xjk (2)
(,,k)ET,

is the length of the ith spanning tree. It is clear that Y and C are well defined

random variables. The characterization of the random variable C is, in general,

quite difficult. Our attention will be focused on obtaining approximations to C and

its distribution function Ff.

The obvious approximation to the expected length of the MST is obtained by

replacing the random variables by their expectations and then constructing the

MST. Let

g = min{EY} = min{ F, EXjk } (3)
TiET TET (jk)ET,

represent this approximation. It may be trivially established that g does provide

an upper bound, i.e.,

E g. (4)

The value of g can be easily computed by any of the several "greedy" algorithms

(Kruskal [1956]; Prim [1957], Loberman and Weinberg [1957]).

We shall use the following version of the Prim algorithm (Aho et al. [19831,

p.235) to construct an analytic device which we shall use to obtain a tighter bound

for Ee. The algorithm is described in pseudo-Pascal notation.
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Procedure PRIM (G(N, A):graph; var S:set of arcs;
var q:length; w:arc weights);

(PRIM constructs an MST for G, the nodes in N are numbered from 1 to n}
var

U set of nodes;
i,j: vertex;
PRIMNUM: array[1.. n] of integer;

begin
q :0;
S
U :- {1}
PRIMNUM(1) := 1;
k := 2;

while U A A do
begin

find (ij) such that wq = mi {wu};
VEA\U

PRIMNUM(k) := j;
S := S U {(;,j)};
U := U);
q :=q + wqj;

k :=k+
end

end; {PRIM}

The algorithm PRIM constructs a MST with respect to the set {W,}(ij),EA of

arc weights and stores the MST arcs in the set S. In variable q it computes the

"length" of the MST so obtained. It also records in the array PRIMNUM, the node

numbers of the nodes of G in the order they were selected for inclusion in the set U.

We shall make use of PRIM to generate a new numbering of the nodes of G

w.r.t a given set {tWij}(ij)eA, according to the order in which they were included

in the minimal spanning tree. Let this new numbering of nodes be called the

Prim-numbering of G w.r.t {Wijt}(ij)EA. It then follows from this definition that if

{1', 2', ... , n'} represents a Prim-numbering of G with respect to arc weights EXjj,

then
ft.

g = min {EXiop}.()
.0 = 2 l< _ < i '

We shall henceforth assume that G is Prim-numbered w.r.t {EXi}(ij)EA.

The following analytic device, motivated by Gilbert's paper [19651, enables us to

obtain a better bound for Ef. Consider a spanning tree (not necessarily minimal)
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constructed for a given w (i.e., for a given realization of the graph), as follows:

For i = 2,3,... ,n choose the arc (i,j) such that

X,,(w) = rin{Xjt(w)}.
1<k<i

It is easily shown by induction on i that fcr each w, the n - 1 arcs chosen as above

form a spanning tree (Gilbert 1965). We shall refer to this tree as an exodic tree (the

term is coined by Gilbert, who explains its interpretation on p.378 of his paper).

Define Wi = min{X 1 ,... ,Xj,,,} for i = 2,...,n, and
n n

Z = Wi = E min {Xjj}. (6)
i=2 i=2 l<j<i

Then Z is a random variable that represents the length of the exodic tree. Z is

uniquely defined for a given numbering of the nodes of G and is simpler to analyze

than e. Indeed it is easy to show that EZ improves on g as an approximation of Ee.

Theorem 1. If G is Prim-numbered w.r.t {EXjf}(ij)EA, then

Ee < EZ <g.

Proof: The first inequality is trivial because by construction, : < Z almost surely.

Now, from (6)
n

EZ E min{Xj}.= lj<i

n

E E min{X,}
i=2
E min{JEXj}

i=2 <j<i

=g

where the last equation follows from (5). 1

It is noteworthy that our choice of the first node in the PRIM algorithm is quite

arbitrary. There are, therefore, at least n different Prim-numberings of G which

satisfy Theorem 1, and each yields a (possibly) different upper bound Z. (There

would be more than n Prim-numberings if ties are encountered during execution of

PRIM).

Theorem 1 holds even when there is lack of independence among X,,'s. To

obtain the distribution of Z, however, we invoke this independence. Let the random
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variables W have distribution functions Fw, for i = 2,... , n. Since, Z = X2- 2 W,,

the DF of Z is given by the (n - 1)-fold convolution

Fz(x) = (Fw*..., Fw.)(x) (7)

where *-1

Fwj(x) = 1 -1 (1 - Fk(x)). (8)
k=1

To illustrate the use of these formulas, consider the exponential case

Fi(x) = I - e-x'i"  X > 0

and let X - be independent. Then,

Fw,(x) = 1 - fI e-ihZ 1 - exp( - (Z A,,)x).
k=1 k=1

Let Ai = = Ak. Then the Laplace-Stieltjes transform of Fw, is given by
& ,C )~ 0 \io e-"e - \i d x

Fw, (s) = fo S+z __+¥ A,'

and the Laplace-Stieltjes transform of Fz is

i=2)1 8s+ \,

To invert the transform, we expand Pz(s) as a partial fraction:

Pz (S) = A2  + --A 3 + a--+A (A)S+A2 As+1\ A,*

By successively substituting -A 2 , -A 3 , etc. for s and solving for A2, A3 , etc., we

obtain
n

Ai - k=2 2,..., n (10)

S(Ak - k)
k=2

And now by the linearity of the Laplace transform, the individual terms in (9) can

be inverted to yield the distribution of Z:

Fz(X) = A ie" dt = -X-1 )
=6 i=2
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which gives

EZ= A

i=2

When X,, are i.i.d exponential with parameter A, (11) yields

n 1
EZ =1) (12)

i=2(- )

If the Laplace transform of FZ is not directly invertible by inspection as above, then

an explicit integration using the Inversion Formula may have to be used.

2 Accuracy of the Approximation

Some insight into the relationship between e and Z can be obtained from a Monte-

Carlo simulation of the random minimal spanning tree. For our experiment, we

generated graphs with random arc lengths for complete and sparse graphs with i.i.d

and non-i.i.d arc lengths. Tables 1 through 4 compare EZ, Ee, and g for graphs of

various sizes. EZ is computed for each value of n by using the formulas of section 3.

E is the average over 1000 Monte-Carlo realizations of the random graph whose

structure (i.e., the sets N and A, and 14ii's, the mean arc lengths for arcs in A)

was chosen prior to the Monte-Carlo step, in accordance with the schemes indi-

cated in the four tables. For sparse graphs (Tables 1 and 3), our code first checked

for connectedness of graphs (not guaranteed by our method of generating random

structures), though for a sparsity factor (i.e., probability than an arc exists) of 0.1,

we always got connected graphs.
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Table 1: X exponentially distributed with Aij, chosen uniformly between 1.0 and
100.0. Sparsity factor = 0.1 (i.e. Pr{arc (i,j) exists) = 0.1)

n EC EZ g
40 626.046 791.389 1120.296
50 622.346 865.687 1228.896
60 381.298 566.956 962.151
70 422.141 601.960 1107.655
80 380.470 541.991 1111.642
90 354.753 532.965 1113.422
100 348.155 548.266 1143.779
110 348.654 552.688 1231.698
500 274.760 469.036 1590.662

Table 2: Xjj exponentially distributed with j#is chosen uniformly between 1.0 and
100.0. Sparsity factor = 1.0 (i.e. Complete graph).

n EC EZ g
10 34.276 46.627 105.640
20 31.642 49.353 137.619
30 28.040 43.484 135.129
40 27.191 42.128 136.703
50 26.367 47.483 157.473
60 27.955 51.071 173.729

70 27.157 50.821 185.730
80 26.064 51.209 187.194

90 27.156 50.809 203.407
100 27.432 50.940 222.503
110 26.963 54.678 230.275
500 26.140 74.147 518.133
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Table 3: Xj . i.i.d exponential with Aij = 1.0. Sparsity factor = 0.1

(i.e. Pr{arc (i,j) exists} = 0.1).

n Ee EZ g

40 16.562 27.261 39.0

50 16.172 34.778 49.0

60 13.466 32.552 59.0

70 13.646 34.047 69.0

80 13.453 34.834 79.0

90 12.476 36.364 89.0

100 12.196 37.180 99.0

110 11.908 38.747 109.0

501 12.346 55.674 499.0

Table 4: X1j i.i.d exponential with /ij = 1.0. Sparsity factor - 1.0

(i.e. Complete graph).

n Ee EZ g

10 1.258 2.829 9.0

20 1.243 3.548 19.0

30 1.240 3.962 29.0

40 1.242 4.254 39.0

50 1.222 4.479 49.0

60 1.225 4.663 59.0

70 1.241 4.819 69.0

80 1.216 4.953 79.0

90 1.222 5.071 89.0

100 1.216 5.177 99.0

110 1.228 5.273 109.0

500 1.248 6.791 499.0

It is apparent in the cases described in Tables 1-4 that the exodic tree pre-

forms best in relatively sparse graphs with non-identical arcs. It also appears to

be relatively better for small graphs. In each case, EZ provides a considerable

improvement over g as an estimate of Ee. Table 4 also exhibits convergence of E

to the Frieze [19851 limit 1C(3).

In the remainder of this section we develop an analytical characterization of the
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tightness of the exodic tree as an approximation to the random minimal spanning
tree. We shall first establish the following lower bound.

Proposition 2. Let A! = min {Xq} for i = 2,..., n and A = En2 A!. Then for
1<j<n

every realization of the graph G(N, A),

>_A.

Proof: We use induction and the following obvious facts about deterministic MST's:

1. Every MST (indeed, every tree) admits of at least two nodes of degree 1.

2. If a single-degree node and its (only) associated arc are deleted from a MST,
the remaining arcs form a MST on the remaining nodes.

The Proposition trivially holds for n = 2. Assume it is true for every graph
G(N,A) where INI = n. Let G(N',A') be another graph with IN' = n + 1. For a

given w let i be one of the single-degree nodes on the MST for this realization of

G(N', A'). Let j E N' be the only node adjacent to i on this MST. Then

G(N',A')(W) = Xi,(w) + eGCN'\ i,A )

where subscripts on e indicate the graph w.r.t which the MST length is being

computed, and A = A'\{(i,k)I(i,k) E A'}. Since G(N'\{i},A) is an n-node

graph, we have by the induction hypothesis,

t'+1&(N€,',..,)(W) -> x,( ) + min{Xk,(w)}

n+l

> min Xq (w) + .min, {Xkj(w)}
j~ei k=2 -j#k=2

n+1

= An+' (w) + E A n(w)
k#

k~i
n+l

= Z A'~(w)= AG(N'A.)(w) •

i=2

The random variable A provides a useful lower bound for . Also, Z- A provides
an easily computed upper bound on the difference between Z and e. For instance,
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it is readily seen that for the graphs summarized in Tables 3 and 4, the value of EA

is 10 and 1 respectively. This eliminates the possibility that EC approaches zero as

the number of nodes in the graph grows without limit.

For notational convenience, we denote maxfz, 0} as z + for real x, and define

Vi min(Xj,j+j,...,Xinj if 2< i< n-I1

00 oif i=n

then, recalling that Wi = min{X 1,..., X,i-11,
nt n

A=EAi = ZminWi, V}
i=2 i=2

nt nE W_, w , ( - v) +.
i=2 i=2

Hence
n

Z - A = E(W - V) +  (13)
i=2

It is then clear from (13) that the necessary and sufficient condition for

EA = E= EZ

is

V,>W w.p.1 Vi=2,...,n.

Thus, a node numbering 7r of G is "optimal" (i.e., the upper and lower bounds

on EC with respect to 7r coalesce into Ee) if the above dominance condition is

satisfied for 7r. This dominance condition, however, is not only difficult to verify,

it may well not exist at all among any of the n! numberings of G (as is evident for

any graph whose arc-lengths are distributed over the the same range). One simple

situation in which the dominance condition does hold is when one node is closer to

all other nodes than they are to each other. Suppose, for example, that for any i,j,

P{Xi < Xi} = 1. In this case the minimal spanning tree consists of the familiar

"hub and spoke" pattern, i.e., the arcs (1,j), j = 2,...,n. Clearly, however, the

coalescence of A, C, and Z involves very special circumstances.

3 Asymptotic Optimality

Two questions arise naturally from our discussion of approximations for the random

MST. First, how well do the bounds perform for large graphs? Second, what are

11



the asymptotic properties of the random MST? Our next result shows that under

appropriate conditions the relative error induced by using the exodic tree in place

of the MST tends to zero as the number of nodes in G grows large.

In order to characterize the growth of graphs, we use the "incremental" model of

Weide [19781. Consider a sequence of graphs G1, G 2, ... , where G, = (N.,A.),

Nn, An are respectively the node and arc sets of G,, and INnI = n. Let Xn denote

the arc length random variable for i,j E Nn and (i,j) E An. The incremental

growth model assumes G g G 2 g ... in the sense that X" -- .- for each

(i,j) E An. Thus, the graph Gn+1 is identical to the graph G, save for the addition

of node n + 1 and arcs incident to it.

To denote the functional dependence on the number of nodes, we shall henceforth

annotate our symbols with n. Thus

e =min{ X)

(j,k)MT

and
ft f

Z, m in {X.} W.
i=2 i=

Theorem 3. Let (Gn} be a sequence of complete graphs growing according to the

incremental model. Let X be independent non-negative random variables with

distribution functions Fj having a positive lower support for all (i,j) E An,

i.e., 3a > 0 such that F1i(a-) = 0 V(i,j) E An, and 3 a distribution function F.

such that

1. F. (x) < Fj (x) Vx and V(i, j) E An, and

2. F.(a+e) >0 W>0.

Then as n -- oo,

(a) Za a.s.

If, in addition, E(sup min {Xn.}) < oo, then

() E[- n -  ,and
(b)

(c) EZ-n__

12



Proof: Since F1j(a-) = 0 V(i,j) E A,, we have

Xj'j !a w. p. 1 E~~j A,,.

Hence en ! (n - 1)a w.p. 1, and

Z,, Y=2 i
w.p. 1 (14)

-,,(n -1) a

Now, Vc > 0,

P{Wj > a + c}= ' ( Fij(a + c)) < 1-F.(a + )-.

j=1

Hence,
00 00

E P{Wi > a + ) <E (1 - F.(a + c))'-1 < oo (15)
i=2 i=2

since F. (a + c) > 0; and by the Bore-Cantelli Lemma,

P{Wj>a+ i.o.}= 0 i.e.,

W ---* a a.s.

Therefore the Cesiro sum also converges , i.e., as n --+ Co

a O, a.s.
n-1

Now, the incremental growth of G,, ensures that for any n > i, W,' W, so we

have from (14) Zn
enm --+1 a.s.

To prove (b), observe that

Elsup- Zn E [sup
Lh!n - n2 (n - ')a

< E(n - 1) supi2> W
I(n - 1)a Wj

- E[ sup in.{Xq}]

< 01

13



Hence by Lebesgue Dominated Convergence Theorem, part (a) implies

Similarly, since E(supW.") = E(sup min {X,}) < 0o, we again have by Lebesgue
n>2 n>2 15j <

DCT that

W -- a a.s. * EW: --- a.

Then (c) follows by the Ceshro argument since

EZ1  EW2 +... + EW,'
EG ~(n -1)a

The convergence results of Theorem 3 can be established for sparse graphs as

well, if we ensure that WV, --+ a a.s. The following result extends Theorem 3 to

incomplete graphs. Define the in-degree of a node i in G,, to be the number of

lower-numbered nodes connected to i. i.e., let da(i) = Ej<i I{(,,)EAn1, 2 < i < n.

Again, the incremental growth of G, ensures that d"(i) = d'(i) Vn > i.

Theorem 3'. Theorem 3 holds for incomplete graphs if there exist positive con-

stants 6,'K 1 , K2 , and N such that n > N implies

d (n) > K, + K2 [log n + (1 + 6) log log n].

Proof: Let9. = (1 - F.(a + e)). Then the inequality in (15) reduces to

00 00P{Wn > a + V) < "

n=2 n=2

Since E1 (1/n(logn) ' +6) < oo for all 6 > 0, we have by the comparison test that
En 9l(") converges if there exist positive constants C1, N such that n > N implies

< Cn(logn)1+8

Writing log,6, = -C 2, with C2 > 0, the condition for convergence is given as

log C1, 1
"(n) > log C+ -- [logn + (1 + 6)loglogn].

_C2  C2

14



Writing K, = (log C1 /- C 2) and K 2 - (1/C 2) yields the desired condition. U

It is of interest to note that under the growth conditions of Theorem 3,

•rn inf.. _g, mini EX,
a

Thus, for instance, when X,, are i.i.d with a shifted exponential, i.e.,

PX < X} 0 A -a x < a
P{ -} {1-e - ( - ) a

then g,/Ee, remains bounded below by 1 + -, whereas

<EZ- < EZ- < (n - 1)a + .1 log(rn - 1) +I 1 +log(n - 1) +I 1

<En - EA' - (n- 1)a -1 A(n- 1)a

which indicates rapid convergence of EZ,,/Ee. to 1. For example if a = 1, A = ±101

and n = 500, then EZn overestimates E n by at most 15%.

4 Application to a Network Provisioning Model

Consider the task of costructing a communications network with the MST topology

to interlink a given configuration of nodes. The cost of the connecting cable (e.g.,

a coaxial fiber optic cable) and its installation charge per unit length are deemed

substantially high; and at the planning stage the length of cable needed to link a

pair of nodes is not known with certainty (due to uncertainties about the exact

path to be taken, wastages, etc.). The planner needs to place an order for the

total length of cable required for the network based on probabilistic information

about the inter-node distances, and the "true" distances (upon which the MST

configuration is based) become known only later at the implementation stage. If

the ordered length of cable falls short of the true requirement, then a supplemental

order must be placed at a higher unit cost, possibly also accompanied by a fixed

ordering cost. Contrariwise, the surplus length of cable can be disposed of at some

salvage value. The decision problem is to determine the optimal quantity of cable

to be ordered at the first stage so as to minimize the total expected cost of cable

needed for the network. This problem is an example of the classical single-period
"newsboy" problem. The difficulty lies in characterizing the "demand" distribution.
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Let x be this order quantity and let cl, c2 be the unit costs of cable in stage 1

and stage 2 respectively. Let s be the salvage value per unit length of cable, and

K the fixed ordering cost should a supplemental order be needed in stage 2. Let

0 < 8 < c, < c 2, and K > 0.

As before, G = (N, A) represents the graph with INI = n, and the arc-lengths

Xijis are independent random variables with DF's Fj's. Then the total cost of

cable needed for the network is given by

C(n, z) = ciX + c 2(,' - z)+ Ki(c.>,) - s(z - n)+ (16)

whence

EC(e-x) = CIX+ c 2 ](t - x) dFf..(t) + K(i - F,.(x)) -a fs](x - t) dF W(t) (17)

where Ff. is the DF of the MST length. If Ff. has density ff., then the first-order

condition requires that the optimal order satisfy the equation

(C2 - S)Ff,. () - Kfe. = C2 - cI (18)

In case there is no fixed cost for the supplemental order, then, the optimal order

quantity zx, is the (' )th fractile of Fe..

Since FC. is analytically intractable, we solve a surrogate problem of minimizing

EC(Z,, z), the expected total cost for the exodic tree, and obtain the optimal order

quantity 4 . by solving

(c2 - a)Fz. (z) - Kf& (z) = c2 - c,

Again, if K = 0, 4,. is obtained as the ("r;)th fractile of Fz. which can be

computed as in Section 1. Notice that since C. < Z. w.p. 1, we have F,, (x) >

Fz. (x) Vz, and hence xC,, < 4,,.
The remainder of this section is devoted to characterizing the "goodness" of

our approximation for the provisioning problem. Assume henceforth that G(N, A)

satisfies the conditions of Theorem 3.

Our first result states that for any size z of the order, the surrogate problem provides

an asymptotically correct approximation to the total cost.
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Proposition 4.

lim C(Z", X) = 1 a.s. uniformly in z

Proof: Since f+ - g+ < (f - g)+ for all functions f and g, we have from (16)

C(Zn,X) c2(Zn - Cn)+ + a(Z. - Cn)* + K(I{z.>} - 1{.>.})r
C(n.,z) - c1X + C2(e - z)* + Kl{l.>x) - s(z - .)+

Now, since s < C1 < C2 ,

Cle < c1z + c2(C - x)+ + XK{ .>2 } - s(x - n) a.s. Vx

Therefore
C (n, X) -n -<n + + Z n K

LTG, X. +C, n + C,-,-- . a.s.

- C ( ) a.s. because Zn _> en a.s.

Since - --+ 1 a.s by Theorem 3(a), and en -* oo a.s., the Proposition follows by

taking limits as n -. oc and noting that the right-hand side is independent of x. a

We require some technical lemmas in order to obtain our main result on the

asymptotic precision of the exodic tree as a surrogate for the MST.

Lemma 5.

lim EC(Zn, x) = 1 uniformly in z-.- EC( n,x)

Proof: As in Proposition 4, .9 < c < C2 = c,C. < C(C.,z) a.s. Vz. Hence,

cEf. < EC(n, x) Vx.

Now from (17),

EC(Z,,, x) _ I: < C2E(Zn - Cn)+ + sE(Z, - Cn)+ + K(P{Zn > 2;1 - P{ C, > 4j)
EC(en, x) cIE& I

Again, since Zn en a.s.,

EC(Zn,x) C+ [EZ 1 K 1
EC(f.,z) c1 E 1 c,

Application of Theorem 3(c) as n -- o then completes the proof. I
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Lemma 6. Let (f,), (ga) be sequences of real-valued functions having global min-

ima at points (zx), (y.) respectively. If

lir n = 1 uniformly in us,

then

lim (--+o g.(Yn)

Proof: By the optimality of z and yn

fn (Xn) < fn(z;*) < fn (Y*) (19)

gn(.;) - gn(yn) - gn(Y-)

and by the assumed uniform convergence, the left and right sides of (19) both

converge to 1. 1

The main result can now be established.

Proposition 7. Let there exist **z. and zx. such that

EC(en,z;.) = minEC(C.,z)
Z20

and

EC(Z, x%) = minEC(Zn,z)

Then

(a) rnE(Z.,z,) 1, and
n-o EC(en,x*)

(b) lim EC(=,z 1

n-oo EC(en, =.)

Proof: For definiteness, when z4. and zx. are not unique, we take the smallest

among such values. Then (a) is a direct application of Lemmas 5 and 6.

To prove (b), first observe that

c2 (Z- C) if Z.> n>X

C(Z.,x) - C(e,x)= c2(Z. - x) + K + ( - ) if z > X > C

(z- en) if X>zn>C

18



Therefore, since , _ Z, w.p. 1, we have by Theorem 1

C (e",X) _ C (Z"',X) VX w.p. 1

* and hence
EC(r,z) <_ EC(Z,,x) Vx (20)

Notice that S< C('.)< EC(Z, *F)
1 EC(Cr,x;.) - EC(Cr,xj.)

where the first inequality follows from the optimality of x;. for EC(e,, x), and the

second from (20). Now by taking limits as n --+ oo and using part (a), we get the

desired convergence. I

Proposition 7 may be interpreted in the following manner. For each instance of

the problem, the MST network is constructed according to the "true" arc-lengths

that become known at the implementation stage. Therefore, the expected total

cost function that the planner really faces is EC(e,,, x), which by definition is mini-

mized at xzn. Then EC(e,,, zx,) is the expected total cost the planner will incur by

using x%, the optimal order quantity computed for the surrogate problem. Propo-

sition 7(b) asserts that the proportional error in optimal expected cost, induced by

using the surrogate problem, tends to zero. This approach to approximating the

provisioning problem is similar in spirit to that of Dempster et al. [1983] in their

analysis of hierarchical scheduling problems.

5 Concluding Remarks and Open Questions

It seems likely that the conclusions of Theorem 3 will hold under much weaker

conditions. One generalization would be to establish these results under the more

general "independent" growth model for random graphs (Weide [19781). It may

also be possible to relax the requirement of a uniform positive lower support a

for all Fj's, and prove the theorem for positive, but not necessarily equal, lower

supports aji's for Fkj's respectively. However, we would not be able to do away

entirely with positive supports since we know from Frieze's [1985] result that in the

absence of these, the MST length converges to a limit for complete graphs with
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i.i.d arc lengths. In particular, for complete graphs with i.i.d. exponential(A) arc

lengths, ECn --+ j(3), and from (12), EZn - - log n.

One of the analytical difficulties in strengthening Theorem 3 lies in not having

tight lower bounds that we can exploit. We use A in section 2 to examine how node

numbering affects the "goodness" of EZ, and work with (n - 1)a in Theorem 3, but

none of these is very tight. A tighter lower bound to e is L = - X(k), the sum

of the first n - 1 order statistics of Xj's, and it remains an open question to see if

this or any other lower bound might enable a generalization of our results.

Acknowledgement: We are grateful to an anonymous referee for simplifying

an earlier proof of Proposition 2.

20



References

AHO, A.V., J.E. HOPCROFT AND J.D. ULLMAN. 1983. Data Structures and
Algorithms. Addison-Wesley. Reading, Mass.

DEMPSTER M.A.H., M.L. FISHER, L. JANSEN, B.J. LAGEWEG, J.K.
LENSTRA AND A. H. G RINNOOY KAN. 1983. Analysis of Heuristics for Stochas-
tic Programming: Results for Hierarchical Scheduling Problems. Math. Opns.
Res. 8, 525-537.

FRIEZE, A. M. 1985. On the Value of a Random Minimum Spanning Tree Problem.
Discrete Appl. Math. 10, 47-56.

GILBERT, E.N. 1965. Random Minimal Trees. J. SIAM. 13, 376-387.

HARARY, E. 1969. Graph Theory. Addison-Wesley. Reading, Mass.

KRUSKAL, J.B., JR. 1956. On the Shortest Spanning Subtree of a Graph and the
Travelling Salesman Problem. Proc. Amer. Math. Soc. 7, 48-50.

LAWLER, E. 1976. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston. New York.

LOBERMAN H. AND A. WEINBERGER. 1957. Formal Procedures for Connecting
Terminals with a Minimum Total Wire Length. J. ACM. 4, 428-437.

LUEKER, G.S. 1981. Optimisation Problems on Graphs with Independent Edge
Weights. SIAM J. Comput. 10, 338-351.

PRIM, R. C. 1957. Shortest Connection Networks and Some Generalizations. Bell
Sys. Tech. Jour. 36, 1389-1401.

RIORDAN, J. 1978. An Introduction to Combinatorial Analysis. Princeton Univer-
sity Press. Princeton, New Jersey.

STEELE, J.M. 1981. Growth Rates of Minimal Spanning Trees of Multivariate
Sample. Stanford Univ., Dept. of Statistics. Research Report.

WEIDE, B. 1978. Statistical Methods in the Design of Algorithms. Ph.D Thesis,
Carnegie-Mellon University.

21


